Abstract

This paper presents a methodology for generating pairs of attributed graphs with a lower and upper- bounded graph edit distance (GED). It is independent of the type of attributes on nodes and edges. The algorithm is composed of three steps: randomly generating a graph, generating another graph as a sub-graph of the first, and adding structural and semantic noise to both. These graphs, together with their bounded distances, can be used to manufacture synthetic databases of large graphs. The exact GED between large graphs cannot be obtained for runtime reasons since it has to be computed through an optimal algorithm with an exponential computational cost. Through this database, we can test the behavior of the known or new sub-optimal error-tolerant graph-matching algorithms against a lower and an upper bound GED on large graphs, even though we do not have the true distance. It is not clear how the error induced by the use of sub-optimal algorithms grows with problem size. Thus, with this methodology, we can generate graph databases and analyze if the current assumption that we can extrapolate algorithms’ behavior from matching small graphs to large graphs is correct or not. We also show that with some restrictions, the methodology returns the optimal GED in a quadratic time and that it can also be used to generate graph databases to test exact sub-graph isomorphism algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call