Abstract
Logistics joint distribution network (LJDN) optimization involves vehicle routes scheduling and profit allocation for multiple distribution centers. This is essentially a combinational and cooperative game optimization problem seeking to serve a number of customers with a fleet of vehicles and allocate profit among multiple centers. LJDN routing optimization based on customer clustering units can alleviate the computational complexity and improve the calculation accuracy. In addition, the profit allocation mechanism can be realized based on cooperative game theory through a negotiation procedure by the Logistics Service Provider (LSP). This paper establishes a model to minimize the total cost of the multiple centers joint distribution network when each distribution center is assigned to serve a series of distribution units. An improved particle swarm optimization (PSO) algorithm is presented to tackle the model formulation by assigning distribution centers (DCs) to distribution units. Improved PSO algorithm combines merits of PSO algorithm and genetic algorithm (GA) with global and local search capabilities. Finally, a Shapley value model based on cooperative game theory is proposed to obtain the optimal profit allocation strategy among distribution centers from nonempty coalitions. The computational results from a case study in Guiyang city, China, suggest the optimal sequential coalition of distribution centers can be achieved according to Strictly Monotonic Path (SMP).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.