Abstract

In this paper, we develop a methodology to determine flow stress at the machining regimes and friction characteristics at the tool-chip interface from the results of orthogonal cutting tests. We utilize metal cutting analysis originally developed by late Oxley and present some improvements. We also evaluate several temperature models in calculating the average temperatures at primary and secondary deformation zones and present comparisons with the experimental data obtained for AISI 1045 steel through assessment of machining models (AMM) activity. The proposed methodology utilizes measured forces and chip thickness obtained through a basic orthogonal cutting test. We conveniently determine work material flow stress at the primary deformation zone and the interfacial friction characteristics along tool rake face. Calculated friction characteristics include parameters of the normal and frictional stress distributions on the rake face. Determined flow stress data from orthogonal cutting tests is combined with the flow stress measured through split-hopkinson pressure bar (SHPB) tests and the Johnson-Cook work material model is obtained. Therefore, with this methodology, we extend the applicability of Johnson-Cook work material model to machining regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call