Abstract
A new analysis method, multi-resolution analysis which is based on wavelet transform is proposed in the study of a grinding wheel surface. The main advantages of the wavelet transform over the traditional signal processing techniques are its space-frequency localization and multiscale view of the components of the signal. Using wavelet transformations, we can effectively eliminate the measurement noise in the wheel measurement process, and decompose the measured profile according to different scales. The wheel surface can be reconstructed from the multi-resolution profile using the combination of different scales according to practical needs, and particular to this paper, the characteristic wavelength of the wheel can be obtained from the multi-resolution study of the wheel. The characteristic wavelength associated with their characteristic grain can be used in the prediction of ground surface roughness. The wavelet transformation method can also be used in the data compression of the measurement data, which provides and efficient method for the modeling of the grinding wheel surfaces. The analysis and simulation results can be applied to the grinding process simulation and grinding process control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.