Abstract

Carbon and activated carbon hollow fiber membranes were prepared from an asymmetric co-polyimide precursor through the application of common pyrolytic carbonization procedures followed by carbon dioxide activation. A complete analytical methodology, consisting of a combination of advanced static and dynamic techniques, is proposed as a tool to elucidate the asymmetric pore structure of the developed carbon membranes. More specific, the carbon hollow fiber morphology was investigated by scanning electron microscopy. The mean micropore size of the existing separating layers was defined by surface excess adsorption of the probe molecules H 2, CO 2, N 2 and CH 4. The micropore size distribution was derived by means of the Grand Canonical Monte Carlo simulation method, using the experimental data of either the H 2 77 K or both H 2 and CO 2 adsorption isotherms. In addition, single phase and relative permeability experiments revealed the coexistence of a small population of mesopores on the pore structure of the dense separating layers. Overall, the proposed methodology has been proved sufficient to distinguish the simultaneous occurrence of three separating layers in each of the developed membranes and discriminate between their different pore structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.