Abstract

The Analysis of data often requires information that is not available from a single source, but from multiple sources. Statistical matching procedures are methods that help to merge information from different sources into a single data set. Traditionally, statistical matching is done on the basis of computed distances between selected variables found in all data sets. Situations where no decision can be made in traditional statistical matching, e.g., in the case of identical distances, cause problems. We present a methodology for statistical matching with fuzzy logic which solves these problems. After a short introduction, the basics of traditional statistical matching are presented. The description of the theory of statistical fuzzy matching follows thereafter. The paper concludes with a short example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.