Abstract
Sea-level rise will increase the risks associated with coastal hazards of flooding and erosion. Along the active tectonic margin of California, the diversity in coastal morphology complicates the evaluation of future coastal hazards. In this study, we estimate future coastal hazards based on two scenarios generated from a downscaled regional global climate model. We apply new methodologies using statewide data sets to evaluate potential erosion hazards. The erosion method relates shoreline change rates to coastal geology then applies changes in total water levels in exceedance of the toe elevation to predict future erosion hazards. Results predict 214 km2 of land eroded by 2100 under a 1.4 m sea level rise scenario. Average erosion distances range from 170 m along dune backed shorelines, to a maximum of 600 m. For cliff backed shorelines, potential erosion is projected to average 33 m, with a maximum potential erosion distance of up to 400 m. Erosion along the seacliff backed shorelines was highest in the geologic units of Cretaceous marine (K) and Franciscan complex (KJf). 100-year future flood elevations were estimated using two different methods, a base flood elevation approach extrapolated from existing FEMA flood maps, and a total water level approach based on calculations of astronomical tides and wave run-up. Comparison between the flooding methods shows an average difference of about 1.2 m with the total water level method being routinely lower with wider variability alongshore. While the level of risk (actual amount of future hazards) may vary from projected, this methodology provides coastal managers with a planning tool and actionable information to guide adaptation strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.