Abstract

This paper proposes a systematic methodology for predicting and optimizing the performance of an energy regenerative suspension system to efficiently capture the vibratory energy induced by the road irregularities. The method provides a graphical design guideline for the selection of stiffness and damping coefficients aimed at either best ride comfort or maximum energy harvesting. To achieve energy regeneration capability, a low-power electronic circuit capable of providing a variable load resistance is developed and fabricated. The circuit is controlled to provide an adjustable damping coefficient in the real-time. A test-bed is utilized to experimentally verify the proposed techniques. The results indicate that the analytical and simulation results concerning the optimal values for dynamic control and power regeneration match the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.