Abstract

Planning for the deployment of air defence (AD) assets in areas of operation to achieve maximum protection coverage against enemy air threats is an important problem in military science. A three-stage approach to address the problem is proposed: a static methodology to deploy AD resources to maximize the coverage and performance of radar systems under various terrain conditions is studied, followed by the second stage that considers the dynamics of enemy air attacks and Electronic Warfare (EW) conflict that ensues between the attacker and defender modeled using game theory. In the final stage the conflict scenarios modelled using game theory are represented as AD wargames and experimented on a battlefield simulation test-bed called Air Warfare Simulation System (AWSS) to assess the AD effectiveness in operations. The first stage uses a coverage-based optimization, and the second stage is modelled using game theory. The strategies of the attacker (enemy aircraft) and defender (sensors-radars grid and weapons-missiles grid) in the EW operations as Electronic Counter Measures and Electronic Counter-Counter Measures in a game-theoretic setting are illustrated using several scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call