Abstract

This paper introduces an ultrasonic detection methodology specifically designed to assess damage in thin-walled cylindrical shells, which crucially relies on the interaction between a bounded ultrasonic beam and a thin-walled cylindrical shell immersed in fluid, considering both water-filled and air-filled cavities. Initially, we derive the scattered sound field expression for a bounded ultrasonic beam obliquely striking the shell. Subsequently, through finite element simulations and experimental verification, we observe that when the incident bounded beam is emitted at the critical angles defined in this study, early damage significantly enhances the received sound pressure amplitude detected by a symmetrically positioned receiver. Notably, a mere 5 % decrease in the shell's elastic modulus leads to a notable 233.69 % increase in the area under the amplitude-frequency curve of the received sound pressure for water-filled cavities and a remarkable 642.85 % surge in area for air-filled cavities. Experimental data further validates the sensitivity of this method towards varying corrosion damage states. This approach combines the reliability of linear ultrasonic methods with the enhanced sensitivity of nonlinear ultrasonic techniques, offering a significant advancement over traditional ultrasonic detection methods for inspecting cylindrical shells. The proposed assessment method holds immense potential in providing novel insights for inspecting cylindrical shells in practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.