Abstract

These days, many assembly lines are becoming automated, leading to a trend of decreasing defect rates. However, in assembly lines that have opted for partial automation due to high cost of construction, defects still occur. The cause of defects are that the location of the work instructions and the work field are different, which is inefficient and some workers who are familiar with the process tend not to follow the work instructions. As a solution to establishing a system for object detection without disrupting the existing assembly lines, we decided to use wearable devices. As a result, it is possible to solve the problem of spatial constraints and save costs. We adopted the YOLO algorithm for object detection, an image recognition model that stands for “You Only Look Once”. Unlike R-CNN or Fast R-CNN, YOLO predicts images with a single network, making it up to 1000 times faster. The detection point was determined based on whether the pin was fastened after the worker’s hand appeared and disappeared. For the test, 1000 field data were used and the object-detection performance, mAP, was 35%. The trained model was analyzed using seven regression algorithms, among which Xgboost was the most excellent, with a result of 0.15. Distributing labeling and class-specific data equally is expected to enable the implementation of a better model. Based on this approach, the algorithm is considered to be an efficient algorithm that can be used in work fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.