Abstract

The environmental performance of biomass processing plants can be enhanced through industrial symbiosis in bioenergy parks which utilize synergistic exchanges to ensure more sustainable operations. However, symbiosis will also increase the interdependence of plants, such that when one plant fails, there will be a cascading effect in the entire network. In this work, a criticality index is proposed to quantify the effects of a plant's failure to run at full capacity. This index is the ratio of the fractional change in the net output to the fractional change in capacity of the plant causing the failure. The plants in the entire bioenergy park can then be ranked based on this index. Such information can then be used for developing risk mitigation measures, such us planning for system redundancy. A case study is presented to demonstrate how the method determines the criticality of plants within a bioenergy park.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.