Abstract

In this paper, we present a methodology for simulating nanoparticle formation in a turbulent flow by coupling Direct Numerical Simulation (DNS) and population balance modelling. The population balance equation (PBE) is solved via a discretisation method employing a composite grid that provides sufficient detail over the wide range of particle sizes reached during the precipitation process. The coupled DNS/PBE approach captures accurately the strong interaction between the dynamics of turbulent mixing and particle formation processes. It also allows the calculation of the particle size distribution (PSD) of the product and enables an investigation on how it is controlled by turbulent mixing. Finally, it provides the statistics of kinetic processes and their timescales so that further analysis can be performed. The methodology is applied to the simulation of experiments of hydrodynamics and nanoparticle precipitation in a T-mixer (Schwertfirm et al., Int. J. of Heat and Fluid Flow 28, pp. 1429–1442; Schwarzer et al., Chem. Eng. Sci. 61, pp. 167–181), and the agreement with the experimental results is very good.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.