Abstract

Summary This paper proposes an extension to an existing operating-envelope technique used for underbalanced drilling (UBD) to enhance control of bottomhole pressure and inflow parameters. With the use of an implementation of the drift-flux model (DFM) with boundary conditions typically encountered in underbalanced operations (UBO), a steady-state analysis of the system is performed. Through this analysis, four distinct operating regimes are identified, and the behavior in each of them is investigated through steady-state calculations and transient simulations. In particular, the analysis reveals that a section of the operating envelope previously believed to be unstable/transient is, in fact, stable/steady when a fixed choke opening is used as an independent variable in place of a fixed wellhead pressure (WHP). This results in the steady-state operating envelope being extended, and gives an increased understanding of the well behavior encountered in UBO toward enabling the introduction of automated control. Finally, we investigate the mechanism behind severe slugging in UBO and argue that the cause is different from that of the slugging encountered in production and multiphase transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call