Abstract

In this work, a general methodology and innovative framework to characterize and quantify representativeness uncertainty of performance indicator measurements of power generation systems is proposed. The representativeness uncertainty refers to the difference between a measurement value of a performance indicator quantity and its reference true value. It arises from the inherent variability of the quantity being measured. The main objectives of the methodology are to characterize and reduce the representativeness uncertainty by adopting numerical simulation in combination with experimental data and to improve the physical description of the measurement. The methodology is applied to an industrial case study for demonstration. The case study involves a computational fluid dynamics (CFD) simulation of an orifice plate-based mass flow rate measurement, using a commercially available package. Using the insight obtained from the CFD simulation, the representativeness uncertainty in mass flow rate measurement is quantified and the associated random uncertainties are comprehensively accounted for. Both parametric and nonparametric implementations of the methodology are illustrated. The case study also illustrates how the methodology is used to quantitatively test the level of statistical significance of the CFD simulation result after accounting for the relevant uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.