Abstract
A methodology is developed for the analysis of diesel engine in-cylinder processes and combustion. Beginning from CAD data of the engine geometry, the methodology involves use of a commercial code AVL FIRE for simulation of suction stroke, and an open-source code KIVA-3V for simulation of the closed-valve part of the diesel cycle. For this, an algorithm is first developed to map a generalised three-dimensional Computational Fluid Dynamics (CFD) solution from an unstructured mesh in AVL FIRE to a structured mesh in KIVA-3V to provide initial conditions for the closed-valve simulations. For simulation of diesel combustion process, an integrated KIVA-3V code is developed by incorporating two well-validated models into the standard code: the Shell hydrocarbon auto-ignition model for simulation of diesel auto-ignition under conditions of high temperature and pressure, and the Characteristic-time model for simulation of subsequent diesel combustion. The integrated code is validated and calibrated against experimental pressure measurements in a naturally aspirated direct injection diesel engine. These tools are then used for exploring the potential of a constant-speed, turbocharged diesel engine towards emission reduction. The case study involves combustion simulations for exploring multiple injection strategy for the engine concerned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Computational Fluid Dynamics, An International Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.