Abstract

Healthcare artificial intelligence (AI) holds the potential to increase patient safety, augment efficiency and improve patient outcomes, yet research is often limited by data access, cohort curation, and tools for analysis. Collection and translation of electronic health record data, live data, and real-time high-resolution device data can be challenging and time-consuming. The development of clinically relevant AI tools requires overcoming challenges in data acquisition, scarce hospital resources, and requirements for data governance. These bottlenecks may result in resource-heavy needs and long delays in research and development of AI systems. We present a system and methodology to accelerate data acquisition, dataset development and analysis, and AI model development. We created an interactive platform that relies on a scalable microservice architecture. This system can ingest 15,000 patient records per hour, where each record represents thousands of multimodal measurements, text notes, and high-resolution data. Collectively, these records can approach a terabyte of data. The platform can further perform cohort generation and preliminary dataset analysis in 2-5 minutes. As a result, multiple users can collaborate simultaneously to iterate on datasets and models in real time. We anticipate that this approach will accelerate clinical AI model development, and, in the long run, meaningfully improve healthcare delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.