Abstract

BackgroundThe study aimed to establish a 68Ga-FAPI-04 kinetic model in hepatic lesions, to determine the potential role of kinetic parameters in the differentiation of hepatocellular carcinoma (HCC) from non-HCC lesions.Material and methodsTime activity curves (TACs) were extracted from seven HCC lesions and five non-HCC lesions obtained from 68Ga-FAPI-04 dynamic positron emission tomography (PET) scans of eight patients. Three kinetic models were applied to the TACs, using image-derived hepatic artery and/or portal vein as input functions. The maximum standardized uptake value (SUVmax) was taken for the lesions, the hepatic artery, and for the portal veins—the mean SUV for all healthy regions. The optimum model was chosen after applying the Schwartz information criteria to the TACs, differences in model parameters between HCC, non-HCC lesions, and healthy tissue were evaluated with the ANOVA test.ResultsA reversible two-tissue compartment model using both the arterial as well as venous input function was most preferred and showed significant differences in the kinetic parameters VND, VT, and BPND between HCC, non-HCC lesions, and healthy regions (p < 0.01).ConclusionSeveral model parameters derived from a two-tissue compartment kinetic model with two image-derived input function from vein and aorta and using SUVmax allow a differentiation between HCC and non-HCC lesions, obtained from dynamically performed PET scans using FAPI.

Highlights

  • The study aimed to establish a 68Ga-Fibroblast activation protein (FAPI)-04 kinetic model in hepatic lesions, to determine the potential role of kinetic parameters in the differentiation of hepatocellular carcinoma (HCC) from non-HCC lesions

  • Several model parameters derived from a two-tissue compartment kinetic model with two image-derived input function from vein and aorta and using SUVmax allow a differentiation between HCC and non-HCC lesions, obtained from dynamically performed positron emission tomography (PET) scans using FAPI

  • 174-259 MBq 68Ga-FAPI-04 was administered intravenously and the dynamic PET was performed over the liver region simultaneously

Read more

Summary

Introduction

The study aimed to establish a 68Ga-FAPI-04 kinetic model in hepatic lesions, to determine the potential role of kinetic parameters in the differentiation of hepatocellular carcinoma (HCC) from non-HCC lesions. Hepatocellular carcinoma (HCC), the most common primary liver cancer. HCC remains an important global clinical challenge due to its hidden onset. It is a highly heterogeneous cancer [1]. Imaging modalities, including ultrasonography, CT, and MRI are valuable in hepatic lesion characterization, they still have limitations in distinguishing the functional variables or the differentiation of malignant lesions [1]. There were shreds of evidence that limited sensitivity using 2-deoxy2-[18F]fluoro-D-glucose (FDG) PET in detecting hepatocellular carcinoma with the falsenegative rate approaches 40-50% [3]. The limited diagnostic efficacy of current imaging strategies remains a major challenge in the accurate evaluation of hepatic lesions

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.