Abstract
The large availability of both air pollution and COVID-19 data, and the simplicity to make geographical correlations between them, led to a proliferation of ecological studies relating the levels of pollution in administrative areas to COVID-19 incidence, mortality or lethality rates. However, the major drawback of these studies is the ecological fallacy that can lead to spurious associations. In this frame, an increasing concern has been addressed to clarify the possible role of contextual variables such as municipalities’ characteristics (including urban, rural, semi-rural settings), those of the resident communities, the network of social relations, the mobility of people, and the responsiveness of the National Health Service (NHS), to better clarify the dynamics of the phenomenon. The objective of this paper is to identify and collect the municipalities’ and community contextual factors and to synthesize their information content to produce suitable indicators in national environmental epidemiological studies, with specific emphasis on assessing the possible role of air pollution on the incidence and severity of the COVID-19 disease. A first step was to synthesize the content of spatial information, available at the municipal level, in a smaller set of “summary indexes” that can be more easily viewed and analyzed. For the 7903 Italian municipalities (1 January 2020—ISTAT), 44 variables were identified, collected, and grouped into five information dimensions a priori defined: (i) geographic characteristics of the municipality, (ii) demographic and anthropogenic characteristics, (iii) mobility, (iv) socio-economic-health area, and (v) healthcare offer (source: ISTAT, EUROSTAT or Ministry of Health, and further ad hoc elaborations (e.g., OpenStreetMaps)). Principal component analysis (PCA) was carried out for the five identified dimensions, with the aim of reducing the large number of initial variables into a smaller number of components, limiting as much as possible the loss of information content (variability). We also included in the analysis PM2.5, PM10 and NO2 population weighted exposure (PWE) values obtained using a four-stage approach based on the machine learning method, “random forest”, which uses space–time predictors, satellite data, and air quality monitoring data estimated at the national level. Overall, the PCA made it possible to extract twelve components: three for the territorial characteristics dimension of the municipality (variance explained 72%), two for the demographic and anthropogenic characteristics dimension (variance explained 62%), three for the mobility dimension (variance explained 83%), two for the socio-economic-health sector (variance explained 58%) and two for the health offer dimension (variance explained 72%). All the components of the different dimensions are only marginally correlated with each other, demonstrating their potential ability to grasp different aspects of the spatial distribution of the COVID-19 pathology. This work provides a national repository of contextual variables at the municipality level collapsed into twelve informative factors suitable to be used in studies on the association between chronic exposure to air pollution and COVID-19 pathology, as well as for investigations on the role of air pollution on the health of the Italian population.
Highlights
Air pollution is a major global public health risk factor and puts an enormous health and economic burden on human societies
Recent systematic reviews of epidemiological evidence linking ambient air pollution to human health are collected in a Special Issue [5], adopted as a basis to inform the formulation of the new air quality guidelines (AQG) published by WHO in 2021 [6]
The objective of this paper is to identify and collect the contextual factors available at the municipality level in Italy, and to synthesize their information content to produce indicators to be used in national epidemiological studies aimed at assessing the role of air pollution on the incidence and severity of the COVID-19 disease
Summary
Air pollution is a major global public health risk factor and puts an enormous health and economic burden on human societies. Based on the last available estimates, air pollution ranked 4th among major mortality risk factors globally, exceeding the impacts of obesity, high cholesterol, and malnutrition. Air pollution is estimated to have contributed to 6.67 million deaths worldwide in 2019, nearly 12% of the global total, and ambient PM2.5 alone is responsible for 4.14 million deaths [1,2]. The new AQGs reflect the large impact of air pollution on global health, halving the recommended limits for average annual PM2.5 levels from 10 micrograms per cubic meter to 5, and lowering those for PM10 from 20 to 15 micrograms
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of environmental research and public health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.