Abstract

A simple, fast, and rather general procedure combining the superposition principle with a finite element method is proposed to deal with conjugate heat transfer problems. The method is employed to consider the wall conduction effect on heat transfer to fully developed laminar flow through a pipe whose exterior boundary is uniformly heated along a finite length. Results are given for two values of each of the four parameters determining the relative importance of axial conduction: the Peclet number of the fluid, the wall to fluid conductivity ratio, and the dimensionless thickness and length of the heated section of the pipe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.