Abstract

Abstract One of the issues in thermal asperity (TA) detection using an embedded contact sensor (ECS) is the degradation caused to the read/write elements of the head while interacting with the TA. We propose a method to reduce such head-disk interaction (HDI) during TA detection and classification by flying higher at low thermal fly-height control (TFC) power, which minimizes the interaction of the TA with the head. The key idea is to scan the head at higher fly height, but with higher ECS bias voltage. Initial experiments have shown that the TA count follows a negative cubic relationship with the backoff at various bias levels, and that it follows a square relationship with bias at various backoff levels. Using a sample set, the calibration curves i.e. the golden relationship between these parameters can be established. Using these, one can start the TA detection at the highest backoff and high ECS bias, and start to estimate the nominal TA count. By mapping out these TAs and ensuring the head does not fly over them again to prevent HDI, the fly height can then be lowered, and the rest of the TA cluster can be scanned. Following this method iteratively, the entire TA cluster can be mapped out with minimal interaction with the head. Although this method entails an increase in the test time to detect and map all TAs, compared to detecting them with TFC being on, this can help improve the reliability of the drive by protecting the sensitive read/write elements especially for energy assisted recording from HDI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.