Abstract

In the context of the use of AM, particularly in the L-PBF technique, the printability characterization of material occurs through the identification of its printability map as a function of printing process parameters. The printability map identifies the region where the powder melting is optimal and ensures a dense and defect-free material. Identifying the zones affected by physical phenomena that occur during the printing process which lead to material defects such as keyhole, lack of fusion and balling mode is also possible. Classical methods for the characterization of material and the identification of its printability map require the printing of a large number of specimens. The analysis of the specimens is currently time-consuming and costly. This paper proposed a methodology to identify optimal process parameters in L-PBF using an integrated single and multi-tracks analyses embedded in an overall algorithm with detailed metrics and specific factors. The main scope is to speed up the identification of printability window and, consequently, material characterization, reducing the number of micrographic analyses. The method is validated through an experimental campaign assessing the material microstructure in terms of porosity and melt pool evaluation. The case study on IN718 superalloy shows how the application of the proposed method allows an important reduction of micrographic analysis. The results obtained in the case study are a reduction of 25% for the complete definition of the printability map and more than 90% for identifying the zone with a high productivity rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.