Abstract

Enhanced blue fluorescent protein (EBFP) and enhanced green fluorescent protein (EGFP) mutants of GFP in close proximity to one another can act as a fluorescence resonance energy transfer (FRET) pair. Unstructured amino acid linkers of varying length were inserted between EBFP and EGFP, revealing that linkers even as long as 50 amino acids can be accommodated and still allow FRET to occur. This led to the development of a novel biosensor for Rac/Cdc42 binding to their effector proteins based on the insertion of amino acids 75–118 of p21-activated kinase (PAK) between the GFP mutants. We demonstrate that this protein construct allows significant FRET between EBFP and EGFP and retains the ability to bind to Rac in its GTP-bound form with a binding affinity similar to the uncomplexed PAK fragment, and furthermore, on binding to Rac or Cdc42 a marked change in FRET takes place. This forms the basis for a simple, sensitive, and rapid method to measure binding of Rac/Cdc42 to their effector proteins. Since the signal is dependent upon the interaction with active GTP-bound forms it acts as a biosensor for the activation of Rac/Cdc42. It has the potential for use in live cells and for identifying localization of Rac/Cdc42 within subcellular compartments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.