Abstract

The substrate characteristics of GaAs photoconductive switch has been studied in order to determine the conditions required to generate maximum terahertz pulse amplitude in the device. In particular, the substrate material characteristics, such as trap density, capture cross sections, trap occupancy that determine fields, recombination rate, and photogeneration that influence the pulse rise-time in a low temperature grown gallium arsenide semiinsulating material, are studied. Results show that maximum pulse amplitude occurs when the carriers of both polarities contribute to the terminal currents, and the voltage at this point is referred to as the dual injection voltage (DIV). DIV for a given device is directly dependent on the substrate properties as well as the proximity of the electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.