Abstract

Compensated porosity logging tool utilizing deuterium-tritium (D-T) source shows a lower sensitivity to the variation of formation porosity compared with that adopting Am-Be source. In order to improve the sensitivity, the factors of an infinite homogeneous formation influencing slowing-down length and the near to far counts ratio are analyzed. Then Monte Carlo simulation method is used to build well logging models to study the responses of a neutron porosity logging tool to hydrogen index and formation density. It shows that in addition to hydrogen index, the variation of the density also has a great impact on slowing-down length and the ratio which reduces the response sensitivity to porosity. A new model depicts the relationship between the count ratio and porosity is proposed. When the model is used to process the measured ratio, the ratio shows improved dynamic range and sensitivity to porosity compared with the values without processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.