Abstract

Integer linear programming (ILP) problems are harder to solve than linear programming (LP) problems. It doesn’t work if try to round off the results of LP problems and claim they are the optimum solution. The branch-and-bound (B&B) is the popular method to solve ILP problems. In this paper, we propose a revised B&B, which is demonstrated to be more efficient most of time. This method is extraordinarily useful when facing ILP problems with large differences between constraints and variables. It could reduce the number of constraint and work efficiently when handling ILP problems with many constraints and less variables. Even if the ILP problems have fewer constraints but many variables, we suggest using duality concept to interchange variables with constraints. Then, the revised B&B could be used to compute results very quickly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.