Abstract

GFP-chimeric mice are important tools to study the role of bone marrow-derived cells in eye physiology. A method is described to generate GFP-chimeric mice using whole-body, sub-lethal radiation (600 rad) of wild-type C57BL/6 recipients followed by tail vein injection of bone marrow cells derived from GFP+ (GFP-transgenic C57/BL/6-Tg(UBC-GFP)30 Scha/J) mice. This method yields stable GFP+ chimeras with greater than 95% chimerism (range 95–99%), achieved within one month of bone marrow transfer confirmed by microscopy and fluorescence-assisted cell sorting (FACS) analysis, with lower mortality after irradiation than prior methods. To demonstrate the efficacy of GFP+ bone marrow chimeric mice, the role of circulating GFP+ bone marrow–derived cells in myofibroblast generation after irregular photo-therapeutic keratectomy (PTK) was analyzed. Many SMA+ myofibroblasts that were generated at one month after PTK were derived from GFP+ bone marrow-derived cells. The GFP+ bone marrow chimeric mouse provides an excellent model for studying the role of bone marrow-derived cells in corneal wound healing, glaucoma surgery, optic nerve head pathology and retinal pathophysiology and wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call