Abstract

A micromechanical approach is developed to investigate the behavior of composite materials, which undergo interfacial delamination. The main objective of this approach is to build a bridge between the intricate theories and the engineering applications. On the basis of the spring-layer model, which is useful to treat the interfacial debonding and sliding, the present paper proposes a convenient method to assess the effects of delamination on the overall properties of composites. By applying the Equivalent Inclusion Method (EIM), two fundamental tensors are derived in the present model, the modified Eshelby tensor, and the compliance tensor (or stiffness tensor) of the weakened inclusions. Both of them are the fundamental tensors for constructing the overall constitutive law of composite materials. By simply substituting these tensors into an existing constitutive model, for instance, the Mori-Tanaka model, one can easily evaluate the effects of interfacial delamination on the overall properties of composite materials. Therefore, the present method offers a pretty convenient tool. Some numerical results are carried out in order to demonstrate the performance of this model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.