Abstract

Internal soliton is the large amplitude wave existing in the pycnocline, induced by internal tide in the condition of special bottom topography. During its propagation process, the induced disturbance can bring about strong convergence of sea water and sudden strong current (wave-induced-current), which can cause severe threat to the ocean engineering structures, such as oil drilling platform and pipeline. In this paper, Morison’s empirical method, modal separation and regression analyses are introduced to estimate the forces and torques exerted by internal soliton on cylindrical piles. As an example, a limited set of observational data recording a passage of the internal soliton near Dongsha Islands is used to estimate the horizontal velocity and its acceleration in a vertical section for computing the force and torque on a supposed pile, and the estimation results are reasonable. It is shown that, the higher number of the modes retained in the calculation, the better the estimation of velocity profile fits the observational one. A better overall approximation to the real solution can be reached if there are more observational current data acquired in a whole vertical profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.