Abstract

Abstract High rock stress and ground temperature pose great threats to the routine production of longwall top coal caving (LTCC) panels. In this risky condition, the width of the chain pillar is considered a factor adjustable for controlling coal burst and goaf ignition hazards. However, a contradiction, as suggested by longwall experience, is that narrowing the pillar helps coal burst prevention but negatively leads to higher self-ignition potentials, while widening the pillar restrains goaf ignition but increases the likelihood of coal burst. This paper conducted a case study on a longwall panel from Tangkou Mine, China. The paper first analysed stress, elastic strain energy, and goaf temperature variation with varying pillar widths, by which the coal burst risk index δr and goaf ignition risk index Qs were defined and correlated to pillar width D. Further, a pillar width determination method considering coal burst and goaf ignition dual-hazard management was developed by means of the operating point principle. By this method, a reasonable width range was defined by plotting both correlation curves δr=fD and Qs=gD on a chart, followed by optimal width determination according to the intersection of both curves and further verification via a field trial.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call