Abstract

A method is described which can be used to calculate dynamic gear tooth force and bearing forces. The model includes elastic bearings. The gear mesh stiffness and the path of contact are determined using the deformations of the gears and the bearings. This gives contact outside the plane-of-action and a time-varying working pressure angle. In a numerical example it is found that the only important vibration mode for the gear contact is the one where the gear tooth deformation is dominant. The bearing force variation, however, will be much more affected by the other vibration modes. The influence of the friction force is also studied. The friction has no dynamic influence on the gear contact force or on the bearing force in the gear mesh line-of-action direction. On the other hand, the changing of sliding directions in the pitch point is a source for critical oscillations of the bearings in the gear tooth frictional direction. These bearing force oscillations in the frictional direction appear unaffected by the dynamic response along the gear mesh line-of-action direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.