Abstract

Friction and heat generation in oil-lubricated ball bearings is mainly the result of sliding in the ball-raceway contacts and agitation of the lubricant in the free space between the balls, cage. and bearing rings. Endurance of a ball bearing is highly dependent on the thicknesses of the oil films which serve to separate the balls from the raceways in a well-lubricated bearing. The film thicknesses, in turn, are dependent upon the lubricant's viscous properties. These are functions of bearing temperatures and are determined by the balance between the rates of frictional heat generation and heat dissipation. Therefore, in the design of a ball bearing application such as the high speed rotor and low speed rotor support bearings in an aircraft gas turbine, it is important to be able to predict the bearing frictional heat generation rates with reasonable accuracy. This paper presents a method to perform the required calculations considering hearing loading and speeds, realistic lubricant rheological properties, and a relatively simple heat transfer system between the hearing rings, halls. And lubricant. The results of the analysis are shown to compare favorably with experimental data. Presented as a Society of Tribologists and Lubrication Engineers Paper at the STLE/ASME Tribology Conference in San Francisco, CA October 21–24, 2001

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.