Abstract

Seismic probabilistic safety assessment (PSA) models for nuclear power plants (NPPs) have many non-rare events whose failure probabilities are proportional to the seismic ground acceleration. It has been widely accepted that minimal cut sets (MCSs) that are calculated from the seismic PSA fault tree should be converted into exact solutions, such as binary decision diagrams (BDDs), and that the accurate seismic core damage frequency (CDF) should be calculated from the exact solutions. If the seismic CDF is calculated directly from seismic MCSs, it is drastically overestimated. Seismic single-unit PSA (SUPSA) models have random failures of alternating operation systems that are combined with seismic failures of components and structures. Similarly, seismic multi-unit PSA (MUPSA) models have failures of NPPs that undergo alternating operations between full power and low power and shutdown (LPSD). Their failures for alternating operations are modeled using fraction or partitioning events in seismic SUPSA and MUPSA fault trees. Since partitioning events for one system are mutually exclusive, their combinations should be excluded in exact solutions. However, it is difficult to eliminate the combinations of mutually exclusive events without modifying PSA tools for generating MCSs from a fault tree and converting MCSs into exact solutions. If the combinations of mutually exclusive events are not deleted, seismic CDF is underestimated. To avoid CDF underestimation in seismic SUPSAs and MUPSAs, this paper introduces a process of converting partitioning events into conditional events, and conditional events are then inserted explicitly inside a fault tree. With this conversion, accurate CDF can be calculated without modifying PSA tools. That is, this process does not require any other special operations or tools. It is strongly recommended that the method in this paper be employed for avoiding CDF underestimation in seismic SUPSAs and MUPSAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.