Abstract
A method has been developed to increase computational efficiency in Monte Carlo simulations of electron transport and interactions in matter. The method serves as the computational engine for the open-source code AMCSET (Aggie Monte Carlo Simulations of Electron and Ion Transport). The key is to combine n consecutive neighboring free flying distances into groups. Within each group, both flying distance and Mott scattering angles are obtained using Monte Carlo sampling under an equal energy approximation. This reduces the number of integrations of the tabulated differential Mott scattering cross-section in scattering angle selection, i.e., from 1000 to 1 if n = 1000. The method increases efficiency by more than 100 times. At the same time, the calculation still guarantees accuracy in calculating electron trajectory, excitation/ionization energy deposition, elastic scattering energy deposition, and displacement creation. For demonstration, 10 MeV electron bombardments of pure Fe with n up to 1000 are used as examples. The method, due to the availability of tabulated scattering cross-sections, is applicable for targets of the entire elemental table up to Z = 118, and for electron energies up to 900 MeV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.