Abstract
One of the most powerful approaches to detect the loci that enable a pathogen to cause disease is the creation of a high-density transposon mutant library by transposon insertion sequencing (TIS) and the screening of the library using an adequate in vivo and/or ex vivo model of the disease. Here we describe the procedure for detection of the putative loci required for a septicemic pathogen to cause sepsis in humans by using TIS plus an ex vivo model of septicaemia: to grow the pathogen in fresh and inactivated human serum. We selected V. vulnificus because it is a highly invasive pathogen capable of spreading from an infection site to the bloodstream, causing sepsis and death in less than 24h. To survive and proliferate in blood (or host serum), the pathogen requires mechanisms to overcome the innate immune defenses and metabolic limitations of this host niche. Initially, genes under-represented for insertions can be used to estimate the V. vulnificus essential gene set. Analysis of the relative abundance of insertion mutants in the library after exposure to serum would detect which genes are essential for the pathogen to overcome the diverse limitations imposed by serum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.