Abstract

This paper describes a method for screening animal populations on an index of calculated probabilities of genotype status at an unknown single locus. Animals selected by such a method might then be candidates in test matings and genetic marker analyses for major gene detection. The method relies on phenotypic measures for a continuous trait plus identification of sire and dam. Some missing phenotypes and missing pedigree information are permitted. The method is an iterative two-step procedure, the first step estimates genotype probabilities and the second step estimates genotypic effects by regressing phenotypes on genotype probabilities, modeled as true genotype status plus error. Prior knowledge or choice of major locus-free heritability for the trait of interest is required, plus initial starting estimates of the effect on phenotype of carrying one and two copies of the unknown gene. Gene frequency can be estimated by this method, but it is demonstrated that the consequences of using an incorrect fixed prior for gene frequency are not particularly adverse where true frequency of the allele with major effect is low. Simulations involving deterministic sampling from the normal distribution lead to convergence for estimates of genotype effects at the true values, for a reasonable range of starting values, illustrating that estimation of major gene effects has a rational basis. In the absence of polygenic effects, stochastic simulations of 600 animals in five generations resulted in estimates of genotypic effects close to the true values. However, stochastic simulations involving generation and fitting of both major genotype and animal polygenic effects showed upward bias in estimates of major genotype effects. This can be partially overcome by not using information from relatives when calculating genotype probabilities-a result which suggests a route to a modified method which is unbiased and yet does use this information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.