Abstract
This paper proposes an approach of online safety assessment for industrial process operations. The core idea is to apply the Hopf bifurcation analysis of nonlinear systems in safety assessment. Herein, the Hopf bifurcation equations are used to characterize the critical stability boundary or manifold of the system, which is taken as the safety limit. Then, a safety index (SI) is constructed to denote the integrated exponential distances between each parameter and their bifurcation points. In the online implementation, the parameters are estimated by the extended Kalman filter (EKF), and the Hopf bifurcation points are generated by solving the nonlinear bifurcation equations. Afterward, the value of the SI can be online calculated. The introduced approach was then applied to a simulated gas phase polyethylene reactor process, in which the efficiency of the proposed method was verified in indicating the distance to the potential unsafe oscillation and in the early identification of potential threats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.