Abstract

Wavefront aberration, which caused by atmospheric turbulence, needs to be measured in the free space optical communication. The existing sensors of wavefront aberration measurement are mainly divided into two classes, wavefront sensors and image-based sensors. Wavefront sensors , such as Hartmann sensor and shearing interferometry, measure wavefront slope to calculate wavefront aberration. However, wavefront sensors always need most of the laser energy, which means it is hard to use wavefront sensors in free space optical communication in the daytime. Image-based sensors usually requires iteration, which means poor real-time and locally optimal solution. No existing method can measure wavefront aberrations in real time in free space optical communication in the daytime. In this article, a new method of measuring wavefront aberration with CNN is proposed, which can be used in free space optical communication in the daytime and have good real-time performance. We made some modifications in VGG to make it can be used to fitting the Zernike coefficients. The input to the network was the PSF of focal plane and defocus plane and the output was the initial estimate of the Zernike coefficients. 22000 pairs of images were collected in the experiment, which produced by liquid crystal and the wavefront was built by 64 Zernike coefficients when atmospheric coherent length(r0) is 5cm. 20000 pairs of images were used as training sets and the other were used as testing sets. The root-mean-square(RMS) wavefront errors of VGG is on average within 0.0487 waves and the time it needs is 11-12ms. We use RMS wavefront error less than 0.1 waves as the correct standard and the correct rate is 98.75% , while other RMS wavefront errors were properly close to 0.1 waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.