Abstract
Accurate organ segmentation is a fundamental step in disease-assisting diagnostic systems, and the precise segmentation of lung is crucial for subsequent lesion detection. Prior to this, lung segmentation algorithms had typically segmented the entire lung tissue. However, the trachea is also essential for diagnosing lung diseases. Challenges in lung parenchyma segmentation include the limited robustness of U-Net in acquiring contextual information and the small size of the trachea being mixed up with lung, making it difficult to identify and reconstruct the lungs. To overcome these difficulties, this paper proposes three improvements to U-Net: multiple concatenation modules to enhance the network’s ability to capture context, multi-scale residual learning modules to improve the model’s multi-scale learning capabilities, and an enhanced gated attention mechanism to enhance the fusion of various hierarchical features. The experimental results demonstrate that our model has achieved a significant improvement in trachea segmentation compared to existing models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.