Abstract

One problem exists in current substructure mining algorithms is that when the sizes of molecular structure databases increase, the costs in terms of both time and space increase to a level that normal PCs are not powerful enough to perform substructure data mining tasks. After examining a number of well known molecular structure databases, we found that there exist a large number of common loop substructures within molecular structure databases, and repeatedly mining these same substructures costs the system resources significantly. In this paper, we introduce a new method: (1) to treat these common loop substructures as some kinds of atom structures; (2) to maintain the links of the new atom structures with the rest of the molecular structures, and to reorganize the original molecular structures. Therefore we avoid repeat many same operations during mining process and produce less redundant results. We tested the method using four real molecular structure databases: AID2DA'99/CA, AID2DA'99/CM, AID2DA'99 and NCI'99. The results indicated that (1) the speed of substructure mining has been improved due to the reorganization; (2) the number of patterns obtained by mining has been reduced with less redundant information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.