Abstract
The paper deals with the identification of Pareto optimal solutions using GA based coevolution in the context of multiobjective optimization. Coevolution is a genetic process by which several species work with different types of individuals in parallel. The concept of cooperative coevolution is adopted to compensate for each of single objective optimal solutions during genetic evolution. The present study explores the GA based coevolution, and develops prescribed and adaptive scheduling schemes to reflect design characteristics among single objective optimization. In the paper, non-dominated Pareto optimal solutions are obtained by controlling scheduling schemes and comparing each of single objective optimal solutions. The proposed strategies are subsequently applied to a three-bar planar truss design and an energy preserving flywheel design to support proposed strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.