Abstract

Fast steering mirror (FSM) plays a crucial role in stabilization of the line-of-sight (LOS) and phase shift compensation. The control accuracy of the FSM is affected by various disturbances especially the vibration in the aviation environment. Traditional anti-disturbance methods, such as disturbance observer (DOB), have a little effect of suppressing disturbance in FSM. But it also brings some problem, such as increasing mass and amplifying high frequency noise. To solve these problems, an anti-disturbance strategy based on adaptive robust control (ARC) was proposed. And it will not amplify the high-frequency noise which is inevitable in DOB. Experimental results show that, using adaptive robust controller, the steady-state error of the FSM decreased 4.8 times compared to simple PID control and 1.9 times compared to DOB+PID control in the simulated vibration environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.