Abstract
This paper presents a new distributed method for virtual Earth terrain tessellation on a graphics processing unit (GPU) for space simulator complexes. The method operates in real time in multi-object virtual scenes comprising up to two million polygons. A polygonal terrain model is constructed using triangle patches of different levels of detail on graphics cards with programmable tessellation. Patches of the same level of detail are calculated entirely on the GPU, in parallel and independently, by using a developed shader program written in the OpenGL Shading Language (GLSL). This paper also describes a patch extraction algorithm for visible Earth surface rendering and an algorithm for correcting the barycentric coordinates of tessellated patch vertices that allows triangles in the terrain model to be docked without geometric discontinuities. Based on the distributed methods and algorithms developed, a program complex for virtual Earth surface visualization was created and successfully tested. The proposed solution can also be employed in virtual environment systems, virtual labs, educational geo-applications, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.