Abstract
This paper proposes a novel speed-limit sign detection and recognition method by using only gray-level information. This method has a real-time processing ability to remind drivers about the speed limit when they are driving on roads, and it contains four main processing modules: speed-limit sign detection, speed-limit sign segmentation, speed-limit sign recognition and system integration. For detecting speed limit signs, both Adaboost and Circular Hough Transform (CHT) are used. For recognizing speed-limit signs, Support Vector Machine is applied and a high recognition performance up to 97.02% is achieved in our experiments. By integrating the four processing modules efficiently, a high efficient speed-limit sign detection and recognition system has been developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.