Abstract

It is well known that isolated singularities of two dimensional analytic vector fields can be desingularized: after a finite number of blowing up operations we obtain a vector field that exhibits only elementary singularities. In the present paper we introduce a similar method to simplify the periodic limit sets of analytic families of vector fields. Although the method is applied here only to reduce to families in which the zero set has codimension at least two, we conjecture that it can be used in general. This is related to the famouss Hibert's problem about planar vector fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.