Abstract
Urethane-based test objects are routinely used for ultrasound quality assurance because of their durability and robustness. The acoustic properties of these phantoms including speed of sound and attenuation, however, have a strong dependence on temperature. Reliable measurement of low-contrast penetration, which is widely used for ultrasound system quality assurance testing, with these phantoms is therefore problematic. To alleviate this, a correction method was proposed using speed of sound estimated by measuring filament target separation. The method was developed using a range of 17 transducer geometry and frequency combinations across 5 ultrasound systems and validated using a further 5 systems. This was found to reduce the uncertainty of low-contrast penetration measurement from an average 17.6 mm to 4.9 mm over the temperature range 8°C to 32°C. This represents a greater than threefold improvement in precision of low-contrast penetration measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.