Abstract

Because of the recent algebraic attacks, a high algebraic immunity is now an absolutely necessary (but not sufficient) property for Boolean functions used in stream ciphers. A difference of only 1 between the algebraic immunities of two functions can make a crucial difference with respect to algebraic attacks. Very few examples of (balanced) functions with high algebraic immunity have been found so far. These examples seem to be isolated and no method for obtaining such functions is known. In this paper, we introduce a general method for proving that a given function, in any number of variables, has a prescribed algebraic immunity. We deduce a way for generating balanced functions in any odd number of variables, with optimum algebraic immunity. We also give an algorithm, valid for any even number of variables, for constructing (possibly) balanced functions with optimum (or, if this can be useful, with high but not optimal) algebraic immunity. We also give a new example of an infinite class of such functions. We study their Walsh transforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.