Abstract

The ability to express exogenous reporter genes in intact, externally developing embryos, such as Xenopus, is a powerful tool for characterizing the activity of cis-regulatory gene elements during development. Although methods exist for generating transgenic Xenopus lines, more simplified methods for use with F0 animals would significantly speed the characterization of these elements. We discovered that injecting 2-cell stage embryos with a plasmid bearing a ϕC31 integrase-targeted attB element and two dual β-globin HS4 insulators flanking a reporter transgene in opposite orientations relative to each other yielded persistent expression with sufficiently high penetrance for characterizing the activity of the promoter without having to coinject integrase RNA. Expression began appropriately during development and persisted into swimming tadpole stages without perturbing the expression of the cognate endogenous gene. Coinjected plasmids having the same elements but expressing different reporter proteins were reliably coexpressed within the same cells, providing a useful control for variations in injections between animals. To overcome the high propensity of these plasmids to undergo recombination, we developed a method for generating them using conventional cloning methods and DH5α cells for propagation. We conclude that this method offers a convenient and reliable way to evaluate the activity of cis-regulatory gene elements in the intact F0 embryo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.