Abstract

Saturation mutagenesis is a fundamental enabling technology for protein engineering and epitope mapping. Nicking mutagenesis (NM) allows the user to rapidly construct libraries of all possible single mutations in a target protein sequence from plasmid DNA in a one-pot procedure. Briefly, one strand of the plasmid DNA is degraded using a nicking restriction endonuclease and exonuclease treatment. Mutagenic primers encoding the desired mutations are annealed to the resulting circular single-stranded DNA, extended with high-fidelity polymerase, and ligated into covalently closed circular DNA by Taq DNA ligase. The heteroduplex DNA is resolved by selective degradation of the template strand. The complementary strand is synthesized and ligated, resulting in a library of mutated covalently closed circular plasmids. It was later shown that because very little primer is used in the procedure, resuspended oligo pools, which normally require amplification before use, can be used directly in the mutagenesis procedure. Because oligo pools can contain tens of thousands of unique oligos, this enables the construction of libraries of tens of thousands of user-defined mutations in a single-pot mutagenesis reaction, which significantly improves the utility of NM as described below. Use of oligo pools afford an economically advantageous approach to mutagenic experiments. First, oligo pool synthesis is much less expensive per nucleotide synthesized than conventional synthesis. Second, a mixed pool may be generated and used for mutagenesis of multiple different genes. To use the same oligo-pool for mutagenesis of a variety of genes, the user must only quantify the fraction of the oligo-pool specific to her mutagenic experiment and adjust the volume and effective concentration of the oligo-pool for use in nicking mutagenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.