Abstract

Measurements of sun-induced chlorophyll fluorescence (SIF) over plant canopies provide a proxy for plant photosynthetic capacity and are of high interest for plant research. Together with spectral reflectance, SIF has the potential to act as a noninvasive approach to quantify photosynthetic plant traits from field to air and spaceborne scales. However, SIF is a small signal contribution to the reflected sunlight and often not distinguishable from sensor noise. SIF estimation is, therefore, affected by an unquantified uncertainty, making it difficult to estimate accurately how much SIF is truly emitted from the plant. To investigate and overcome this, we designed a device based on a spectrometer covering the visible range and equipped it with an LED emitting at the wavelength of SIF. Using this as a reference and applying thorough calibrations, we present consistent evidence of the instrument's capability of SIF retrieval and accuracy estimations. The LED's intensity was measured under sunlight with 1.27 ± 0.27 mW × sr -1 m -2 nm -1 stable over the day. The large increase of SIF due to the Kautsky effect was measured spectrally and temporally proving the biophysical origin of the signal. We propose rigorous tests for instruments intended to measure SIF and show ways to further improve the presented methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.